Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Aging Cell ; 23(4): e14093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287646

RESUMO

Vitamin D3 replacement in older insufficient adults significantly improves their antigen-specific varicella zoster virus (VZV) cutaneous immunity. However, the mechanisms involved in this enhancement of cutaneous immunity are not known. Here, we show for the first time that vitamin D3 blocks the senescence-associated secretory phenotype (SASP) production by senescent fibroblasts by partially inhibiting the p38 MAPK pathway. Furthermore, transcriptomic analysis of skin biopsies from older subjects after vitamin D3 supplementation shows that vitamin D3 inhibits the same inflammatory pathways in response to saline as the specific p38 inhibitor, losmapimod, which also enhances immunity in the skin of older subjects. Vitamin D3 supplementation therefore may enhance immunity during ageing in part by blocking p38 MAPK signalling and in turn inhibit SASP production from senescent cells in vivo.


Assuntos
Senescência Celular , Colecalciferol , Adulto , Humanos , Idoso , Senescência Celular/genética , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Envelhecimento , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Imunidade
2.
Clin Exp Immunol ; 214(1): 61-78, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395602

RESUMO

The immunophenotype of oldest centenarians, i.e. semi- and supercentenarians, could provide important information about their ability to adapt to factors associated with immune changes, including ageing per se and chronic Cytomegalovirus infection. We investigated, by flow cytometry, variations in percentages and absolute numbers of immune cell subsets, focusing on T cells, and pro-inflammatory parameters in a cohort of 28 women and 26 men (age range 19-110 years). We observed variability in hallmarks of immunosenescence related to age and Cytomegalovirus serological status. The eight oldest centenarians showed the lowest percentages of naïve T cells, due to their age, and the highest percentages of T-effector memory cells re-expressing CD45RA (TEMRA), according to their cytomegalovirus status, and high levels of serum pro-inflammatory parameters, although their means were lower than that of remaining 90+ donors. Some of them showed CD8 naïve and TEMRA percentages, and exhaustion/pro-inflammatory markers comparable to the younger ones. Our study supports the suggestion that immune ageing, especially of oldest centenarians, exhibits great variability that is not only attributable to a single contributor but should also be the full result of a combination of several factors. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system; everybody has had a different immunological history. Furthermore, our findings on inflammatory markers, TEMRA and CMV seropositivity in centenarians, discussed in the light of the most recent literature, suggest that these changes might be not unfavourable for centenarians, and in particular for the oldest ones.


Assuntos
Imunossenescência , Longevidade , Masculino , Idoso de 80 Anos ou mais , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Longevidade/genética , Linfócitos T , Centenários , Envelhecimento , Linfócitos T CD8-Positivos
3.
Cancer Cell ; 41(7): 1242-1260.e6, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267953

RESUMO

The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies.


Assuntos
Senescência Celular , Neoplasias Pulmonares , Idoso , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinogênese/metabolismo , Senescência Celular/genética , Células Endoteliais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
4.
Front Oncol ; 13: 1156743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342197

RESUMO

Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines.

5.
Immunol Rev ; 316(1): 160-175, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098109

RESUMO

As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.


Assuntos
Senescência Celular , Linfócitos T , Humanos , Adulto , Envelhecimento , Diferenciação Celular , Antígenos , Linfócitos T CD8-Positivos
6.
Nat Cell Biol ; 24(10): 1461-1474, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109671

RESUMO

The common view is that T lymphocytes activate telomerase to delay senescence. Here we show that some T cells (primarily naïve and central memory cells) elongated telomeres by acquiring telomere vesicles from antigen-presenting cells (APCs) independently of telomerase action. Upon contact with these T cells, APCs degraded shelterin to donate telomeres, which were cleaved by the telomere trimming factor TZAP, and then transferred in extracellular vesicles at the immunological synapse. Telomere vesicles retained the Rad51 recombination factor that enabled telomere fusion with T-cell chromosome ends lengthening them by an average of ~3,000 base pairs. Thus, there are antigen-specific populations of T cells whose ageing fate decisions are based on telomere vesicle transfer upon initial contact with APCs. These telomere-acquiring T cells are protected from senescence before clonal division begins, conferring long-lasting immune protection.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Memória Imunológica , Linfócitos T/metabolismo , Telômero/genética , Telômero/metabolismo , Senescência Celular/genética
7.
Nat Aging ; 2(4): 280-281, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117749
9.
Immunology ; 164(4): 754-765, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34432883

RESUMO

The severity of lesions that develop in patients infected by Leishmania braziliensis is mainly associated with a highly cytotoxic and inflammatory cutaneous environment. Recently, we demonstrated that senescent T and NK cells play a role in the establishment and maintenance of this tissue inflammation. Here, we extended those findings using transcriptomic analyses that demonstrate a strong co-induction of senescence and pro-inflammatory gene signatures in cutaneous leishmaniasis (CL) lesions. The senescence-associated signature was characterized by marked expression of key genes such as ATM, Sestrin 2, p16, p21 and p38. The cell type identification from deconvolution of bulk sequencing data showed that the senescence signature was linked with CD8+ effector memory and TEMRA subsets and also senescent NK cells. A key observation was that the senescence markers in the skin lesions are age-independent of patients and were correlated with lesion size. Moreover, a striking expression of the senescence-associated secretory phenotype (SASP), pro-inflammatory cytokine and chemokines genes was found within lesions that were most strongly associated with the senescent CD8 TEMRA subset. Collectively, our results confirm that there is a senescence transcriptomic signature in CL lesions and supports the hypothesis that lesional senescent cells have a major role in mediating immunopathology of the disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunossenescência/genética , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/etiologia , Leishmaniose Cutânea/patologia , Transcriptoma , Biomarcadores , Biópsia , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Bases de Dados Genéticas , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Leishmaniose Cutânea/metabolismo , Carga Parasitária , Pele/patologia
10.
Nat Rev Urol ; 18(10): 597-610, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34294916

RESUMO

Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Próstata/fisiologia , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Fenótipo Secretor Associado à Senescência/fisiologia , Envelhecimento/imunologia , Microambiente Celular/imunologia , Senescência Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Próstata/citologia , Próstata/imunologia , Doenças Prostáticas/imunologia , Doenças Prostáticas/metabolismo , Doenças Prostáticas/patologia , Hiperplasia Prostática/imunologia , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Fenótipo Secretor Associado à Senescência/imunologia , Microambiente Tumoral/imunologia
11.
Nat Commun ; 12(1): 3379, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099719

RESUMO

GATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2). PGC1α, GATA3 and NRF2 complex together with the ATR to promote mitochondrial biogenesis. These findings extend the pleotropic interactions of GATA3 and highlight the potential for GATA3-targeted cell manipulation for intervention in CD4+ T cell viability and function after DNA damage.


Assuntos
Linfócitos T CD4-Positivos/citologia , Dano ao DNA , Fator de Transcrição GATA3/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cultura Primária de Células
12.
Cell Rep ; 35(10): 109220, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107253

RESUMO

Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Mutagênicos/metabolismo , Linfócitos T/metabolismo , Humanos
13.
Front Immunol ; 12: 632667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767700

RESUMO

Patients infected by Leishmania braziliensis develop debilitating skin lesions. The role of inhibitory checkpoint receptors (ICRs) that induce T cell exhaustion during this disease is not known. Transcriptional profiling identified increased expression of ICRs including PD-1, PDL-1, PDL-2, TIM-3, and CTLA-4 in skin lesions of patients that was confirmed by immunohistology where there was increased expression of PD-1, TIM-3, and CTLA-4 in both CD4+ and CD8+ T cell subsets. Moreover, PDL-1/PDL-2 ligands were increased on skin macrophages compared to healthy controls. The proportions PD1+, but not TIM-3 or CTLA-4 expressing T cells in the circulation were positively correlated with those in the lesions of the same patients, suggesting that PD-1 may regulate T cell function equally in both compartments. Blocking PD-1 signaling in circulating T cells enhanced their proliferative capacity and IFN-γ production, but not TNF-α secretion in response to L. braziliensis recall antigen challenge in vitro. While we previously showed a significant correlation between the accumulation of senescent CD8+CD45RA+CD27- T cells in the circulation and skin lesion size in the patients, there was no such correlation between the extent of PD-1 expression by circulating on T cells and the magnitude of skin lesions suggesting that exhausted-like T cells may not contribute to the cutaneous immunopathology. Nevertheless, we identified exhausted-like T cells in both skin lesions and in the blood. Targeting this population by PD-1 blockade may improve T cell function and thus accelerate parasite clearance that would reduce the cutaneous pathology in cutaneous leishmaniasis.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Leishmaniose Cutânea/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Adulto , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Imunossenescência , Inflamação , Interferon gama/imunologia , Leishmania braziliensis/patogenicidade , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Pele/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Immunother Adv ; 1(1): ltaa008, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284901

RESUMO

Introduction: Ageing is associated with increased number of infections, decreased vaccine efficacy and increased systemic inflammation termed inflammageing. These changes are reflected by reduced recall responses to varicella zoster virus (VZV) challenge in the skin of older adults. Vitamin D deficiency is more common in the old and has been associated with frailty and increased inflammation. In addition, vitamin D increases immunoregulatory mechanisms and therefore has the potential to inhibit inflammageing. Objectives: We investigated the use of vitamin D3 replacement to enhance cutaneous antigen-specific immunity in older adults (≥65 years). Methods: Vitamin D insufficient older adults (n = 18) were administered 6400IU of vitamin D3/day orally for 14 weeks. Antigen-specific immunity to VZV was assessed by clinical score assessment of the injection site and transcriptional analysis of skin biopsies collected from challenged injection sites pre- and post-vitamin D3 replacement. Results: We showed that older adults had reduced VZV-specific cutaneous immune response and increased non-specific inflammation as compared to young. Increased non-specific inflammation observed in the skin of older adults negatively correlated with vitamin D sufficiency. We showed that vitamin D3 supplementation significantly increased the response to cutaneous VZV antigen challenge in older adults. This enhancement was associated with a reduction in inflammatory monocyte infiltration with a concomitant enhancement of T cell recruitment to the site of antigen challenge in the skin. Conclusion: Vitamin D3 replacement can boost antigen-specific immunity in older adults with sub-optimal vitamin D status.

15.
Nat Aging ; 1(1): 101-113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118005

RESUMO

We have previously shown that healthy older adults exhibit reduced cutaneous immune responses during a varicella zoster virus (VZV) antigen challenge that correlated with a nonspecific inflammatory response to the injection itself. Here we found that needle damage during intradermal injections in older adults led to an increase in the number of cutaneous senescent fibroblasts expressing CCL2, resulting in the local recruitment of inflammatory monocytes. These infiltrating monocytes secreted prostaglandin E2, which inhibited resident memory T cell activation and proliferation. Pretreatment of older participants with a p38 mitogen-activated protein kinase inhibitor in vivo decreased CCL2 expression and inhibited monocyte recruitment and secretion of prostaglandin E2. This coincided with an increased response to VZV antigen challenge in the skin. Our results point to a series of molecular and cellular mechanisms that link cellular senescence, tissue damage, excessive inflammation and reduced immune responsiveness in human skin and demonstrate that tissue-specific immunity can be restored in older adults by short-term inhibition of inflammatory responses.


Assuntos
Dinoprostona , Monócitos , Humanos , Idoso , Dinoprostona/metabolismo , Envelhecimento , Herpesvirus Humano 3 , Ativação Linfocitária , Fibroblastos
16.
Front Aging ; 2: 714239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35821998

RESUMO

As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.

17.
Pharmacol Ther ; 221: 107745, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188794

RESUMO

While COVID-19, the disease driven by SARS-CoV-2 has ignited interest in the host immune response to this infection, it has also highlighted the lack of treatment options for the damaging inflammatory responses driven by pathogens that precipitate the acute respiratory distress syndrome (ARDS). With the global prevalence of SARS-CoV-2 and the likelihood of a second winter spike alongside seasonal flu, the need for effective and targeted anti-inflammatory agents is even more pressing. Here we discuss the aetiology of COVID-19 and the common signalling pathways driven by SARS-CoV-2, namely p38 MAP kinase. We highlight that p38 MAP kinase becomes elevated with increasing age, thereby driving many of the inflammatory pathways that precipitate death in old people with the added drawback of impairing vaccine efficacy in this susceptible age group. Finally, we review drugs available to inhibit p38 MAP kinase, their risks-versus-benefits as well as suggested dosing regimen to combat over-exuberant innate immune responses and potentially reverse vaccine inefficacy in older patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Tratamento Farmacológico da COVID-19 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Anti-Inflamatórios/farmacologia , COVID-19/epidemiologia , COVID-19/imunologia , Ensaios Clínicos como Assunto/métodos , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Pneumonia/epidemiologia , Pneumonia/imunologia , Inibidores de Proteínas Quinases/farmacologia , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/imunologia
18.
Front Immunol ; 11: 583019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178213

RESUMO

One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Imunossenescência/imunologia , Inflamação/imunologia , Linfócitos T/imunologia , Vacinação/métodos , Vacinas/imunologia , Idoso , Humanos , Imunidade Humoral , Imunidade Inata , Resultado do Tratamento
19.
Aging Cell ; 19(12): e13272, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166035

RESUMO

The development of senescence in tissues of different organs and in the immune system are usually investigated independently of each other although during ageing, senescence in both cellular systems develop concurrently. Senescent T cells are highly inflammatory and secrete cytotoxic mediators and express natural killer cells receptors (NKR) that bypass their antigen specificity. Instead they recognize stress ligands that are induced by inflammation or infection of different cell types in tissues. In this article we discuss data on T cell senescence, how it is regulated and evidence for novel functional attributes of senescent T cells. We discuss an interactive loop between senescent T cells and senescent non-lymphoid cells and conclude that in situations of intense inflammation, senescent cells may damage healthy tissue. While the example for immunopathology induced by senescent cells that we highlight is cutaneous leishmaniasis, this situation of organ damage may apply to other infections, including COVID-19 and also rheumatoid arthritis, where ageing, inflammation and senescent cells are all part of the same equation.


Assuntos
Linfócitos T CD8-Positivos/citologia , Senescência Celular/fisiologia , Células Matadoras Naturais/imunologia , Leishmaniose Cutânea/imunologia , Receptores de Células Matadoras Naturais/imunologia , Envelhecimento/imunologia , Artrite Reumatoide/imunologia , COVID-19/imunologia , Humanos , Leishmania braziliensis/imunologia , SARS-CoV-2/imunologia
20.
Nat Rev Immunol ; 20(10): 594-602, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913283

RESUMO

The COVID-19 pandemic is shining a spotlight on the field of immunology like never before. To appreciate the diverse ways in which immunologists have contributed, Nature Reviews Immunology invited the president of the International Union of Immunological Societies and the presidents of 15 other national immunology societies to discuss how they and their members responded following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
COVID-19/epidemiologia , Infecções por Coronavirus/epidemiologia , Cooperação Internacional , Pandemias , Pneumonia Viral/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Sociedades Científicas/organização & administração , Antivirais/síntese química , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19 , Relações Comunidade-Instituição , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Saúde Global/tendências , Humanos , Educação de Pacientes como Assunto/organização & administração , Equipamento de Proteção Individual/provisão & distribuição , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/terapia , Vacinas Virais/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...